Cellular Scaling Rules of Insectivore Brains

نویسندگان

  • Diana K. Sarko
  • Kenneth C. Catania
  • Duncan B. Leitch
  • Jon H. Kaas
  • Suzana Herculano-Houzel
چکیده

Insectivores represent extremes in mammalian body size and brain size, retaining various "primitive" morphological characteristics, and some species of Insectivora are thought to share similarities with small-bodied ancestral eutherians. This raises the possibility that insectivore brains differ from other taxa, including rodents and primates, in cellular scaling properties. Here we examine the cellular scaling rules for insectivore brains and demonstrate that insectivore scaling rules overlap somewhat with those for rodents and primates such that the insectivore cortex shares scaling rules with rodents (increasing faster in size than in numbers of neurons), but the insectivore cerebellum shares scaling rules with primates (increasing isometrically). Brain structures pooled as "remaining areas" appear to scale similarly across all three mammalian orders with respect to numbers of neurons, and the numbers of non-neurons appear to scale similarly across all brain structures for all three orders. Therefore, common scaling rules exist, to different extents, between insectivore, rodent, and primate brain regions, and it is hypothesized that insectivores represent the common aspects of each order. The olfactory bulbs of insectivores, however, offer a noteworthy exception in that neuronal density increases linearly with increasing structure mass. This implies that the average neuronal cell size decreases with increasing olfactory bulb mass in order to accommodate greater neuronal density, and represents the first documentation of a brain structure gaining neurons at a greater rate than mass. This might allow insectivore brains to concentrate more neurons within the olfactory bulbs without a prohibitively large and metabolically costly increase in structure mass.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular sc...

متن کامل

Cellular scaling rules for primate brains.

Primates are usually found to have richer behavioral repertoires and better cognitive abilities than rodents of similar brain size. This finding raises the possibility that primate brains differ from rodent brains in their cellular composition. Here we examine the cellular scaling rules for primate brains and show that brain size increases approximately isometrically as a function of cell numbe...

متن کامل

Gorilla and orangutan brains conform to the primate cellular scaling rules: implications for human evolution.

Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great ap...

متن کامل

Cellular Scaling Rules for the Brains of Marsupials: Not as "Primitive" as Expected.

In the effort to understand the evolution of mammalian brains, we have found that common relationships between brain structure mass and numbers of nonneuronal (glial and vascular) cells apply across eutherian mammals, but brain structure mass scales differently with numbers of neurons across structures and across primate and nonprimate clades. This suggests that the ancestral scaling rules for ...

متن کامل

Cellular scaling rules for the brains of an extended number of primate species.

What are the rules relating the size of the brain and its structures to the number of cells that compose them and their average sizes? We have shown previously that the cerebral cortex, cerebellum and the remaining brain structures increase in size as a linear function of their numbers of neurons and non-neuronal cells across 6 species of primates. Here we describe that the cellular composition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009